- Back to Home »
- Eliminasi Gauss
Senin, 23 Desember 2019
Eliminasi Gauss
Eliminasi Gauss adalah suatu metode untuk mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana lagi. Dengan melakukan operasi baris sehingga matriks tersebut menjadi matriks yang baris. Ini dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks baris, lakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.
Ciri ciri Metode Gauss adalah
- Jika suatu baris tidak semua nol, maka bilangan pertama yang tidak nol adalah 1 (1 utama)
- Baris nol terletak paling bawah
- 1 utama baris berikutnya berada dikanan 1 utama baris diatasnya
- Dibawah 1 utama harus nol
Langkah terakhir adalah substitusikan balik dari bawah jadi
X3 = 0.538
X2 - 0.25(X3) = 1.25
X2 = 1.25 + 0.25(0.538)
X2 = 1.384
X1 - 2X2 + X3 = 0
X1 = 2X2 - X3
X1 = 2(1.384) - 0.538
X1 = 2.23
Jadi X1 = 2.23, X2 = 1.384, X3 = 0.538